Tuesday, 7 August 2018

Moving average fir filter matlab


Filtros FIR, filtros IIR e equação de diferença de coeficiente constante linear Filtros de média móvel causal (FIR) Nós discutimos sistemas em que cada amostra da saída é uma soma ponderada de (algumas das) amostras da entrada. Vamos tomar um sistema de soma ponderada causal, onde causal significa que uma dada amostra de saída depende apenas da amostra de entrada atual e outros insumos mais cedo na seqüência. Nem os sistemas lineares em geral, nem os sistemas finitos de resposta ao impulso em particular, precisam ser causais. No entanto, a causalidade é conveniente para um tipo de análise que iria explorar em breve. Se simbolizamos as entradas como valores de um vetor x. E as saídas como valores correspondentes de um vetor y. Então tal sistema pode ser escrito como onde os valores de b são quotweights aplicados às amostras de entrada atuais e anteriores para obter a amostra de saída atual. Podemos pensar na expressão como uma equação, com o sinal de igual signo igual a, ou como uma instrução processual, com o sinal de igual significação atribuição. Vamos escrever a expressão para cada amostra de saída como um loop MATLAB de instruções de atribuição, onde x é um vetor N-comprimento de amostras de entrada, e b é um vetor M-comprimento de pesos. A fim de lidar com o caso especial no início, vamos incorporar x em um vetor mais longo xhat cujas primeiras M-1 amostras são zero. Vamos escrever a soma ponderada para cada y (n) como um produto interno, e faremos algumas manipulações das entradas (como inverter b) para este fim. Esse tipo de sistema é muitas vezes chamado de filtro de média móvel, por razões óbvias. A partir de nossas discussões anteriores, deve ser óbvio que tal sistema é linear e invariante em mudança. Claro, seria muito mais rápido usar a convolução de função MATLAB conv () em vez do nosso mafilt (). Em vez de considerar as primeiras amostras M-1 da entrada como sendo zero, poderíamos considerá-las iguais às últimas amostras M-1. Isso é o mesmo que tratar a entrada como periódica. Bem, use cmafilt () como o nome da função, uma pequena modificação da função mafilt () anterior. Ao determinar a resposta de impulso de um sistema, geralmente não há diferença entre estes dois, uma vez que todas as amostras não iniciais da entrada são zero: Como um sistema desse tipo é linear e invariante em mudança, sabemos que seu efeito em qualquer Sinusoid será apenas a escala e deslocá-lo. Aqui é importante que usemos a versão circular A versão circularmente convoluta é deslocada e escalada um pouco, enquanto a versão com convolução ordinária é distorcida no início. Vamos ver o que a escala exata e deslocamento é usando um fft: Tanto a entrada ea saída têm amplitude apenas nas freqüências 1 e -1, que é como deveria ser, uma vez que a entrada era uma sinusoid eo sistema era linear. Os valores de saída são maiores numa razão de 10,62518 1,3281. Este é o ganho do sistema. E quanto à fase Nós só precisamos olhar onde a amplitude é diferente de zero: A entrada tem uma fase de pi2, como nós pedimos. A fase de saída é deslocada por um adicional 1.0594 (com sinal oposto para a freqüência negativa), ou cerca de 16 de um ciclo à direita, como podemos ver no gráfico. Agora vamos tentar um sinusoid com a mesma freqüência (1), mas em vez de amplitude 1 e fase pi2, vamos tentar amplitude 1,5 e fase 0. Sabemos que apenas a freqüência 1 e -1 terá amplitude não-zero, então vamos apenas olhar Para eles: Novamente a razão de amplitude (15.937712.0000) é 1.3281 - e quanto à fase é novamente deslocada por 1.0594 Se esses exemplos são típicos, podemos prever o efeito do nosso sistema (resposta de impulso .1 .2 .3 .4 .5) em qualquer sinusoide com freqüência 1 - a amplitude será aumentada em um fator de 1,3281 e a fase (freqüência positiva) será deslocada em 1,0594. Poderíamos calcular o efeito desse sistema em sinusoides de outras freqüências pelos mesmos métodos. Mas há uma maneira muito mais simples, e uma que estabelece o ponto geral. Uma vez que a convolução (circular) no domínio do tempo significa multiplicação no domínio da frequência, a partir daí segue-se que, em outras palavras, a DFT da resposta ao impulso é a proporção da DFT da saída para a DFT da entrada. Nesta relação os coeficientes de DFT são números complexos. Desde abs (c1c2) abs (c1) abs (c2) para todos os números complexos c1, c2, esta equação nos diz que o espectro de amplitude da resposta de impulso será sempre a relação entre o espectro de amplitude da saída para a da entrada . No caso do espectro de fase, ângulo (c1c2) ângulo (c1) - ângulo (c2) para todos c1, c2 (com a condição de que as fases que diferem por n2pi são consideradas iguais). Portanto, o espectro de fase da resposta ao impulso será sempre a diferença entre os espectros de fase da saída e da entrada (com quaisquer correções de 2pi são necessárias para manter o resultado entre - pi e pi). Podemos ver os efeitos da fase de forma mais clara se desenrolarmos a representação da fase, ou seja, se adicionarmos múltiplos múltiplos de 2pi conforme necessário para minimizar os saltos produzidos pela natureza periódica da função angle (). Embora a amplitude e a fase sejam normalmente utilizadas para apresentação gráfica e mesmo tabular, uma vez que são uma forma intuitiva de pensar os efeitos de um sistema sobre os vários componentes de frequência de sua entrada, os coeficientes de Fourier complexos são mais úteis algébricamente, A expressão simples da relação A abordagem geral que acabamos de ver funcionará com filtros arbitrários do tipo esboçado, em que cada amostra de saída é uma soma ponderada de algum conjunto de amostras de entrada. Como mencionado anteriormente, estes são muitas vezes chamados filtros de Resposta de Impulso Finito, porque a resposta ao impulso é de tamanho finito, ou às vezes Filtros de Média Móvel. Podemos determinar as características de resposta de freqüência de tal filtro a partir da FFT de sua resposta de impulso e também podemos projetar novos filtros com características desejadas por IFFT a partir de uma especificação da resposta de freqüência. Filtros Autoregressivos (IIR) Não haveria nenhum ponto em ter nomes para filtros FIR, a menos que houvesse algum outro tipo de distinção, de modo que aqueles que estudaram pragmática não ficarão surpresos ao saber que existe de fato outro tipo principal Do filtro tempo-invariante linear. Estes filtros são às vezes chamados recursivos porque o valor de saídas anteriores (assim como entradas anteriores) importa, embora os algoritmos sejam geralmente escritos usando construções iterativas. Eles também são chamados filtros Infinite Impulse Response (IIR), porque em geral sua resposta a um impulso continua para sempre. Eles também são chamados de filtros auto-regressivos, porque os coeficientes podem ser considerados como o resultado de fazer uma regressão linear para expressar valores de sinal como uma função de valores de sinal anteriores. A relação dos filtros FIR e IIR pode ser vista claramente numa equação de diferença de coeficiente constante linear, isto é, estabelecendo uma soma ponderada de saídas igual a uma soma ponderada de entradas. Isto é como a equação que damos anteriormente para o filtro FIR causal, exceto que, além da soma ponderada dos insumos, também temos uma soma ponderada de saídas. Se quisermos pensar nisso como um procedimento para gerar amostras de saída, precisamos reorganizar a equação para obter uma expressão para a amostra de saída atual y (n), Adotando a convenção de que a (1) 1 (por exemplo, escalando outros como E bs), podemos nos livrar do termo 1a (1): y (n) b (1) x (n) b (2) x (n-1). B (Nb1) x (n-nb) - a (2) y (n-1) -. - a (Na1) y (n-na) Se todos os a (n) diferentes de a (1) são zero, isso reduz a nosso velho amigo o filtro FIR causal. Este é o caso geral de um filtro (causal) LTI, e é implementado pelo filtro de função MATLAB. Vamos ver o caso em que os coeficientes B diferentes de b (1) são zero (em vez do caso FIR, onde o a (n) é zero): neste caso, a amostra de saída atual y (n) é calculada como uma Combinação ponderada da amostra de entrada atual x (n) e as amostras de saída anteriores y (n-1), y (n-2), etc. Para ter uma idéia do que acontece com esses filtros, vamos começar com o caso em que: Ou seja, a amostra de saída atual é a soma da amostra de entrada atual e metade da amostra de saída anterior. Bem, tome um impulso de entrada através de alguns passos de tempo, um de cada vez. Deve ficar claro neste ponto que podemos facilmente escrever uma expressão para o n-ésimo valor de amostra de saída: é apenas (se MATLAB contado a partir de 0, isso seria simplesmente .5n). Uma vez que o que estamos calculando é a resposta ao impulso do sistema, temos demonstrado por exemplo que a resposta ao impulso pode de fato ter infinitas amostras diferentes de zero. Para implementar este trivial filtro de primeira ordem no MATLAB, poderemos usar o filtro. A chamada será assim: eo resultado é: Este negócio é realmente ainda linear Podemos olhar para isto empiricamente: Para uma abordagem mais geral, considere o valor de uma amostra de saída y (n). Por substituição sucessiva poderíamos escrever isto como Isto é exatamente como nosso velho amigo a forma convolução-soma de um filtro FIR, com a resposta de impulso fornecida pela expressão .5k. E o comprimento da resposta ao impulso é infinito. Assim, os mesmos argumentos que usamos para mostrar que os filtros FIR eram lineares agora se aplicam aqui. Até agora isso pode parecer um monte de barulho por não muito. O que é toda esta linha de investigação bom para Bem responder esta questão em etapas, começando com um exemplo. Não é uma grande surpresa que possamos calcular uma amostra exponencial por multiplicação recursiva. Vamos olhar para um filtro recursivo que faz algo menos óbvio. Desta vez, torná-lo um filtro de segunda ordem, de modo que a chamada para filtro será da forma Vamos definir o segundo coeficiente de saída a2 para -2cos (2pi40) eo terceiro coeficiente de saída a3 para 1, e olhar para o impulso resposta. Não é muito útil como um filtro, na verdade, mas gera uma onda senoidal amostrada (de um impulso) com três multiplicações por amostra. Para entender como e por que faz isso, e como filtros recursivos podem ser projetados e analisados ​​em O caso mais geral, precisamos dar um passo atrás e dar uma olhada em algumas outras propriedades de números complexos, no caminho para a compreensão da transformada z. Freqüência Resposta do Filtro Média Corrente A resposta em frequência de um sistema LTI é a DTFT do Resposta de impulso, A resposta de impulso de uma média móvel de L-média é Como o filtro de média móvel é FIR, a resposta de freqüência reduz à suma finita Podemos usar a identidade muito útil para escrever a resposta de freqüência como onde deixamos ae menos jomega . N 0 e M L menos 1. Podemos estar interessados ​​na magnitude desta função para determinar quais freqüências passam pelo filtro sem atenuação e quais são atenuadas. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianos por amostra. Observe que, em todos os três casos, a resposta de freqüência tem uma característica de passagem baixa. Uma componente constante (frequência zero) na entrada passa através do filtro sem ser atenuada. Determinadas frequências mais elevadas, tais como pi 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro lowpass, então não temos feito muito bem. Algumas das freqüências mais altas são atenuadas apenas por um fator de cerca de 110 (para a média móvel de 16 pontos) ou 13 (para a média móvel de quatro pontos). Podemos fazer muito melhor do que isso. O gráfico acima foi criado pelo seguinte código Matlab: omega 0: pi400: pi H4 (14) (1-exp (-iomega4)) (1-exp (-iomega)) H8 (18) (1-exp (- (1-exp (-iomega)) (1-exp (-iomega)) traço (omega, abs (H4) abs (H8) abs ( H16)) eixo (0, pi, 0, 1) Copyright copy 2000- - Universidade da Califórnia, BerkeleyMoving filtro médio Você pode pensar em sua lista de observação como segmentos que você tem bookmarked. Você pode adicionar tags, autores, threads e até mesmo resultados de pesquisa à sua lista de observação. Desta forma, você pode facilmente acompanhar os tópicos que você está interessado polegadas Para ver a sua lista de observação, clique no link quotMas newsreaderquot. Para adicionar itens à sua lista de observação, clique no link quotadd para assistir listquot na parte inferior de qualquer página. Como adicionar um item à minha lista de observação Para adicionar critérios de pesquisa à sua lista de observação, pesquise o termo desejado na caixa de pesquisa. Clique no botão quotAdicionar esta pesquisa ao meu link de listagem de visualizações na página de resultados de pesquisa. Você também pode adicionar uma tag à sua lista de observação procurando a tag com a diretiva quottag: tagnamequot onde tagname é o nome da tag que você gostaria de assistir. Para adicionar um autor à sua lista de observação, vá para a página de perfil dos autores e clique no botão quotAdicionar este autor ao meu link de lista de observações na parte superior da página. Você também pode adicionar um autor à sua lista de observação, indo a um tópico que o autor postou e clicando no quotAdicionar este autor ao meu link listquot do relógio. Você será notificado sempre que o autor fizer um post. Para adicionar um tópico à sua lista de observação, vá para a página do tópico e clique no link quotAdicionar este tópico ao meu link de lista de observações na parte superior da página. Sobre Newsgroups, Newsreaders e MATLAB Central O que são newsgroups Os newsgroups são um fórum mundial aberto a todos. Os newsgroups são usados ​​para discutir uma enorme variedade de tópicos, fazer anúncios e trocar arquivos. As discussões são encadeadas ou agrupadas de forma a permitir que você leia uma mensagem postada e todas as suas respostas em ordem cronológica. Isto torna mais fácil seguir o fio da conversa e ver whatrsquos já foi dito antes de postar sua própria resposta ou fazer uma nova postagem. O conteúdo do grupo de notícias é distribuído por servidores hospedados por várias organizações na Internet. As mensagens são trocadas e gerenciadas usando protocolos de padrão aberto. Nenhuma entidade única ldquoownsrdquo os newsgroups. Existem milhares de newsgroups, cada um abordando um único tópico ou área de interesse. O MATLAB Central Newsreader publica e exibe mensagens no newsgroup comp. soft-sys. matlab. Como posso ler ou publicar nos newsgroups Você pode usar o newsreader integrado no site da MATLAB Central para ler e publicar mensagens neste newsgroup. MATLAB Central é hospedado por MathWorks. As mensagens enviadas através do Central Newsreader MATLAB são vistas por todos os grupos de notícias, independentemente de como eles acessam os grupos de notícias. Há várias vantagens em usar o MATLAB Central. Uma conta A sua conta MATLAB Central está ligada à sua conta MathWorks para fácil acesso. Use o endereço de e-mail da sua escolha O MATLAB Central Newsreader permite que você defina um endereço de e-mail alternativo como seu endereço de postagem, evitando a confusão em sua caixa de correio principal e reduzindo o spam. Controle de Spam A maioria do spam do newsgroup é filtrada para fora pelo newsreader central de MATLAB. Marcação As mensagens podem ser marcadas com um rótulo relevante por qualquer usuário conectado. As tags podem ser usadas como palavras-chave para encontrar arquivos particulares de interesse ou como uma maneira de categorizar suas postagens marcadas. Você pode optar por permitir que outras pessoas visualizem suas tags e você pode exibir ou pesquisar outras tags, assim como as da comunidade em geral. Tagging fornece uma maneira de ver tanto as grandes tendências e as menores, mais obscuros idéias e aplicações. Listas de vigilância A configuração de listas de observação permite que você seja notificado das atualizações feitas nos lançamentos selecionados por autor, segmento ou qualquer variável de pesquisa. As notificações da sua lista de observação podem ser enviadas por email (resumo diário ou imediato), exibidas em Meu leitor de notícias ou enviadas via feed RSS. Outras formas de aceder aos newsgroups Utilize um leitor de notícias através da sua escola, entidade patronal ou fornecedor de serviços Internet Pagar o acesso a grupos de notícias de um fornecedor comercial Utilizar Grupos do Google Mathforum. org fornece um leitor de notícias com acesso ao grupo de notícias comp. soft sys. matlab Execute o seu próprio servidor. Para obter instruções típicas, consulte: slyckng. phppage2 Selecione seu país

No comments:

Post a Comment